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Abstract

Historical evolution of engineering disciplines and the

complexity of the MDO problem suggest that disciplinary

autonomy is a desirable goal in formulating and solv-

ing MDO problems. We examine the notion of disci-

plinary autonomy and discuss the analytical properties of

three approaches to formulating and solving MDO prob-
lems that achieve varying degrees of autonomy by dis-

tributing the problem along disciplinary lines. Two of the

approaches--Optimization by Linear Decomposition and
Collaborative Optimization--are based on bilcvel opti-

mization and reflect what we call a structural perspective.

The third approach, Distributed Analysis Optimization, is

a single-level approach that arises from what we call an

algorithmic perspective. The main conclusion of the pa-
per is that disciplinary autonomy may come at a price: in

the bilevet approaches, the system-level constraints intro-

duced to relax the interdisciplinary coupling and enable

disciplinary autonomy can cause analytical and computa-

tional difficulties for optimization algorithms. The single-
level alternative we discuss affords a more limited degree

of autonomy than that of the bilevel approaches, but with-

out the computational difficulties of the bilevel methods.

Key Words: Autonomy, bilevel optimization, distributed

optimization, multidisciplinary optimization, multilevel

optimization, nonlinear programming, problem integra-

tion, system synthesis

Introduction

We examine the mathematical statement of multidis-

ciplinary optimization (MDO) problems or, more specif-

ically, the formulation of MDO problems as optimiza-

tion problems, and the consequences of problem formu-

lation tbr the practical solution of the resulting computa-

tional problem by optimization algorithms. This distinc-
tion between problem formulations and algorithms used

for solving the resulting optimization problems underlies

the work. For the purposes of this paper we view MDO

as comprising a subset of the broader design problem that

can be expressed as a nonlinear programming problem.

MDO problems are distinguished by the complexity of

the constituent disciplinary analyses. Due to the required

specialized knowledge, the disciplines have evolved into

virtually autonomous subjects, and have developed inde-

pendently, in large measure. Justifiably, significant re-
search effort has been and continues to be expended on

disciplinary modeling and solution techniques and, in

many cases (e.g., structural optimization), on the disci-

plinary optimization methods. Analysis codes usually

do take up most of the computational effort. However,
the multidisciplinary synthesis scheme, realized via the

MDO problem formulation, is equally important. It in-

fluences, and may determine, not only how many times

the expensive analysis codes will have to be executed, but
also whether the resulting problem can be efficiently im-

plemented and solved--or solved at all--by available op-
timization algorithms. Therefore, optimization problem

formulation holds profound computational consequences

for the overall MDO process. The present work continues
the effort in [ 1,2] aimed at furthering the understanding of

the analytical properties and computational implications

of MDO problem formulations and at proposing efficient
solution methods based on this understanding.

Because of the complexity and expense of the con-

stituent analyses, most efforts in dealing with system-

atic MDO problem formulation focus on methods that
aim at affording the user the maximum disciplinary au-

tonomy. In this paper, we examine some notions of au-
tonomy and consider three broad classes of MDO prob-

lem formulations--two bilevel optimization formulations

and one single-level, distributed analysis formulation--

in light of disciplinary autonomy, as well as the conse-

quences of the techniques used for attaining autonomy via

distributing the disciplinary subproblems.

The recurring theme of this and related papers [2-4] is

the strong influence of the analytical features of problem
formulation on the ability of nonlinear programming
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Figure 2: Flow of information in multidisciplinary analysis

algorithms to solve the problem reliably and efficiently.

The specific conclusion of this work is that disciplinary

autonomy may comes at a price: In the bilevel approaches
we discuss, the system-level constraints introduced to re-

lax the interdisciplinary coupling and enable disciplinary

autonomy can cause analytical and computational diffi-

culties for optimization algorithms. The single-level alter-

native, Distributed Analysis Optimization (DAO), affords

a more limited degree of autonomy than do the bilevel ap-

proaches, but without the computational difficulties of the

bilevel methods. Details of the implementation for this

formulation may be found in the companion paper [4].

The two-discipline model problem

For simplicity, we present our discussion for a two-

discipline model problem. The disciplines might rep-

resent the aeroelastic interaction between aerodynamics
(Discipline 1) and structural analysis (Discipline 2) for a

wing in steady-state flow. Our description of the model

problem closely follows that in [2, 3] because we wish to

maintain a uniform notation in the description of MDO

problem formulations.

Problem components

We assume that each disciplinary subsystem is based

on a disciplinary analysis, depicted as the input-output re-

lation in Fig. 1.

Each discipline takes as its input a set of design vari-

ables (s, l,) and parameters p,, and produces a set of anal-
ysis outputs a_. The system-level design variables s are

those shared by both disciplines. The disciplinary design

variables 11 and 12 are local to Disciplines 1 and 2, re-

spectively. We use a, to represent the totality of outputs

from a given discipline. These outputs include all data

that are passed to the other discipline as parameters and,

possibly, quantities passed to design constraints and ob-

jectives. Parameters p, are derived from the analysis out-

puts a j, j _ i, of the other discipline, and are not directly
manipulated by the designer in Discipline i. In our aeroe-

lastic example, for instance, the input pl from structures

to aerodynamics would include the wing shape, while the

input P2 from aerodynamics to structures would include

the aerodynamic loads.

The disciplinary input-output relations have the func-
tional form

a_ = Ai(s, l_,p_).

The disciplinary analyses A1 and A2 are assumed to be

independently solvable. That is, we assume that, given
appropriate values of inputs (s, It, Pl) to Discipline I, we

can compute the disciplinary output al via the Discipline

l analysis

al = Al(s, ll,pl).

(By "appropriate" we mean input values for which the

analysis is defined.) Continuing with our aeroelastic il-

lustration, given values Pl for the shape of the wing, we

can compute the flow al around it. Likewise, given ap-

propriate values of inputs (s,12,p2) to Discipline 2, we

assume we can compute the disciplinary outputs a2 as

a2 = A2 (s, 12,P2).
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Figure 3: Flow of information in multidisciplinary optimization

f(s, al,a2)

gl(s, ll,al) >_ 0

g2(s, 12,a2) >_ 0

In our example, given values of the aerodynamic loads P2,

we can compute the structural response a2.

Multidisciplinary analysis

The coupled multidiscipIinary analysis system (MDA)

reflects the physical requirement that a solution simulta-

neously satisfy the two disciplinary analyses. The input

parameters p_ to each discipline are now required to cor-

respond to some (or all) of the outputs aj from the other

disciplinary analysis. This is depicted in Fig. 2.
We write the multidisciplinary analysis system as a

simultaneous system of equations. Given (S, ll, 12), we
have

al = Al(s, ll,a2) (1)

a2 = A2(s, 12,al). (2)

Solving the first equation results in the analysis outputs

al of Discipline 1, and solving the second equation pro-

duces the analysis outputs a2 of Discipline 2. The multi-

disciplinary analysis thus implicitly defines al and a2 as
functions of (s, Ix, 12):

al = al(s, la,12), a2 = a2(s, ll,12).

Solving the coupled equations (1)-(2) leads to a full

multidisciplinary analysis, in which the coupled disci-

plines give a physically consistent (and thus meaning-
ful) result. The disciplinary responses a, describe part

of the behavior of the system. Again, if Discipline 1 rep-

resents aerodynamic analysis of the flow around a wing

and Discipline 2 represents structural analysis of the wing,
the MDA reflects the interaction between the flow field,

which affects the shape of the wing, and the shape of the

wing, which affects the flow field.

A fully integrated formulation

We now couple the two disciplines in connection with

a design optimization problem. Given the need to satisfy

the MDA at a solution, the most natural formulation, ar-

guably, is to impose an optimizer over the MDA. We will

use this formulation to represent the original problem, i.e.,

the problem one ideally wishes to solve. The flow of in-

formation in this formulation is depicted in Fig. 3. Its
mathematical statement is

min f(s, al(S, ll,12),a2(s, ll,12))
8,11 _12

s.t. 91(s, ll,ax(s, ll,12)) >_0 (3)

g2(s,12,a,2(s, lt,12)) >_ 0,

where, given (s, ll, 12), we solve the multidisciplinary

analysis system (1)-(2) for the disciplinary analysis out-

puts al(s, ll, 12) and ae(s, 11,12). The function f repre-
sents the system-level objective.

To facilitate the discussion of one of the distributed

optimization approaches (collaborative optimization), we
have chosen a simplified model problem: each of the con-

straints 9i explicitly depends only on a single discipline's

analysis outputs. There is no constraint that involves al
and a2 jointly. The constraints 91,92 are thus disciplinary

design constraints associated solely with Disciplines 1

and 2, respectively. This choice of design constraints sim-

plifies the exposition, but is not essential. A complete de-
scription of collaborative optimization, without the sim-

plifying assumption, is given in [2].

Two perspectives on problem formulation

Most approaches to formulating MDO problems are

motivated by the wish for computational autonomy of the

disciplinary subsystems, by the need for computational ef-

ficiency, and by a desire to simplify problem synthesis.
The philosophy we call the structural perspective

starts with the multidisciplinary system description and

poses an optimization problem that is thought to corre-

spond to certain physical or organizational characteristics

of the problem. For instance, many approaches to solving

MDO problems assume that the problem is to be decom-

posed along disciplinary lines and that it is desirable to
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treatthedisciplinarysubproblemswithasmuchauton-
omyaspossible,coordinatingthesolutionsofthesubsys-
temproblemsinsomemannerthatwill resultinasolu-
tiontotheoverallsystemdesignproblem.Solutionofthe
resultingsystem-levelproblemisthenattemptedbyus-
ingavailableoptimizationsoftware.Inthestructuralper-
spective,then,thephysicalstructureoftheproblemand
organizationalconsiderationsarethemaindrivingforces
behindthechoiceofproblemformulation.

Optimizationby LinearDecomposition(OLD),or
"hierarchicaldecomposition"[5-12],reflectsthestruc-
turalperspective,asdoestheapproachthathasre-
centlyreceivedattentionunderthenameCollaborative
Optimization(CO)[13-16]. Theunderlyingideaof
CollaborativeOptimization--thenotionof decoupling
thedisciplinesby introducinginterdisciplinaryconsis-
tencyconstraints,whileminimizingameasureof inter-
disciplinaryinconsistencyindisciplinarysubproblems--
appearedpreviouslyin [17-19]and[10-12,20,21].In
OLD,thedisciplinesaregiventheautonomoustaskof
minimizingdisciplinarydesigninfeasibility(thelower-
leveldisciplinaryproblem)whilemaintainingsystem-
levelconsistency.Thesystem-levelproblemistodrive
thedesigninfeasibilitytozero.InCO,thesituationisre-
versed:thedisciplinesaregiventheautonomoustaskof
minimizingsystem-levelinconsistencywhilemaintaining
disciplinarydesignfeasibility.Inbothapproaches,opti-
mizationof thesystem-levelobjective,subjecttointer-
disciplinaryconsistency,isperformedinthesystem-level
problem.

Multilevelapproachesleadto multilevelnonlinear
programs,whicharewellknowntobedifficulttosolve
[22].Thisisadrawbackofthepurelystructuralperspec-
tive.In contrast,thealgorithmic perspective takes as its

starting point the abilities (and inabilities) of optimization

algorithms, and seeks to formulate the MDO problem so

that the resulting optimization problem can be solved re-

liably and efficiently by conventional optimization tech-

niques. The problem is stated as the most general NLP,
examined for structure and gradually reformulated to con-

form to organizational features as much as possible with-

out sacrificing solubility by available algorithms. This ap-

proach is exemplified, for instance, in [23, 24].

These two approaches to formulating MDO problems

are obviously interrelated, and the distinction is arguably

subjective since it is rooted in the methodology used.
However, as we discuss, one can run into trouble if one

ignores the analytical and computational nature of the re-

sulting optimization problem.

In the remainder of the paper, we contrast OLD and

CO with DAO as representatives of these two perspec-
tives. DAO is treated in more detail in a companion paper

[4].

Formulations reflecting the structural perspective

In this section we give reformulations of our two-

discipline model problem in terms of OLD and CO. One

of our aims is to give a careful presentation with complete

notation indicating the exact functional dependence of the

various quantities (e.g., system-level consistency condi-

tions) on the local and system-level design variables. De-

tail in notation helps clarify some of the salient character-

istics of these problem formulations.

Collaborative Optimization

Again, in the interests of unified notation, the descrip-

tion of CO closely follows that in [2, 3]. To reformulate

(3) along the lines of CO, we introduce new disciplinary

design variables al, a2 that relax the coupling between

the subsystems through the shared system design vari-
ables s. The variables ai serve as local copies (at the level

of the disciplinary subproblems) of the shared variables s.

In general, Greek letters will denote new, auxiliary vari-
ables designed to serve at the subproblem level as copies

of shared quantities.
CO is a bilevel approach in which a system-level co-

ordination problem attempts to optimize the system-level

objective resulting in the following system-level problem:

min f(s, tl, t2)
_,q ,_2 (4)
s.t. C(s, ta, t2) = 0,

where there are N interdisciplinary consistency con-

straints C = {ct,..., cu} which we describe presently.

The system-level problem controls the system-level de-

sign variables s and interdisciplinary coupling variables

(tl, t2), which are system-level target values for the disci-

plinary inputs and outputs al and a2.
The system-level problem issues design targets

(s, tl, t2) to the constituent disciplines. In the lower-level

problems, the disciplines design to match these targets,

as follows. In Discipline 1, we are given (s, ta,t2) and

compute O'l(S, tl, t2) and [t(s, tl, re) as solutions of the
following minimization problem in (cq,/t):

1
min _ [ll at - s IIz + II al(al,/1,t2) -tl 11z]
0"1,/1

s.t. gl(al,ll,al(al,ll,t2)) >_ O,
(5)

where al is computed in this disciplinary optimization

problem via the disciplinary analysis

al = Al(at,ll,t2).

In general, we use overbars (e.g., #1,/1) to indicate op-

timal solutions of subsystem problems as a function of

system-level variables. In the disciplinary subproblem

(5), the system-level variables (s, tt, t2) serve either as
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parametersor targets that we try to match. An analogous

problem for Discipline 2 defines solutions 6.2(s,tl,t2)
and [2(s, tl, t2) of the problem

min ½ lit a2 - s II2 + IIa2(_2,12,tl) -t2 II2]
_ ,z_ (6)
S. t. 92(a2,12,a2(_r2,12,tl)) k O.

Again, a2 is computed via the disciplinary analysis

a2 = A2(a2, 12, tl).

Following the terminology of OLD, we refer to the disci-

plinary objectives in CO as discrepancy functions, since

they measure the discrepancy between system-level tar-

gets for disciplinary inputs and outputs and the closest val-

ues that can be obtained by disciplinary designers without

violating disciplinary design constraints.

The introduction of disciplinary minimization sub-

problems of the form (5)-(6) is a distinctive characteris-

tic of CO. The subproNems can be soh,ed autonomously

By solving the subproblems, we eliminate the disciplinary

design variables li from the system-level problem, and

decouple the calculation of the disciplinary analysis out-
puts ai. Information from the solutions of the disciplinary

problems (5)-(6) is then used to define the system-level

consistency constraints c_. The type of system-level con-

straints used gives rise to a specific instance of CO.
The first instance of CO we discuss is the one in which

CO has been most frequently presented (e.g., [13, 14, 16,

17]). In this formulation, the consistency condition is to

drive to zero the value of the target mismatch objective in

subproblems (5)-(6). At the system-level, the interdisci-

plinary consistency constraints are simply the optimal val-

ues of the objectives in (5)-(6). That is, the consistency

constraints C = (el, c2) are defined as

CI(S,

1
tl,t2) = _ [116.1(S,tl,t2) -- S I?+

IIal(6.1(s, tl,t2),[l(S, tl,t2),t2) -- tl II2] (7)

1
c_(s, t:, t2) = :[LI_(_, tl, t2) - _ 112+

II a2(6.2(s, tl,t2),[2(S, tl,t2),tl) - t2 112], (8)

where the bars over or1,6"2, l l, 12 indicate that these val-

ues are the results of solving the disciplinary optimization

subproblems for the given value of the system-level vari-

ables. We call this version CO2, where the subscript "2"

refers to the fact that the ci are sums of squares.

An alternative to the system-level consistency condi-
tions (7)-(8), giving rise to the second instance of CO,

is to match the system-level variables directly with their

subsystem counterparts computed in subproblems (5)-(6).

The consistency constraints C = (Cl,..., c4) are

c:(s,t,,t2) = 6:(s, tt,t2)-s

c2(s, tl,t2) = al(6j(s, tl,t2),[l(s, tl,t2),t2) - tl

c3(s, tl,t2) = 62(s, tl,t2)-s

c4(s, tl,t2) = a2(62(s,t:,t2),[2(s, t1,t2),tl)-t2.

We denote this formulation CO1 to indicate that the quan-

tities in the system-level constraints are not sums of

squares. Note that (ca, c2) are associated with Discipline

l, while (c3, c4) are associated with Discipline 2.
In either CO1 or CO2, we will call a value of the

system-level variables (s, tl, t2) realizable for Discipline

i if the optimal objective value in the corresponding dis-

ciplinary optimization problem (5) or (6) is zero. Real-
izable values of the system-level variables correspond to

desirable designs. A design is desirable if the optimal ob-

jective value in the disciplinary optimization problem for

Discipline i is zero. This means that Discipline i can ex-

actly match the system-level input-output targets without

violating the disciplinary design constraints. In general,

there will be many realizable values of the system-level

variables for a given discipline. A point (s, tl, t2) is fea-

sible for the system-level problem when it is realizable for

all the constituent disciplines.

Optimization by Linear Decomposition

OLD [5-12] maintains interdisciplinary consistency

at the system level while seeking to minimize the viola-

tion of the disciplinary design constraints at the subsys-

tem level. In this respect, OLD and CO complement one
another.

In the lower-level problems, the disciplines use their

local design degrees of freedom to minimize the violation

of the disciplinary design constraints, subject to matching

the target value for the disciplinary output that is fed into

that discipline. This is effected as follows. In Discipline
1, we are given (S, tl,t2) and compute [:(s, ti,t2) as a

solution of the following minimization problem in 11:

min Cl(S, ll,tl,t2)
h (9)

s.t. tl =al(S, ll,t2),

The analysis output al is computed in this disciplinary

optimization problem via the disciplinary analysis

al = A1 (s, ll, t2).

Note that in the disciplinary subproblem (9), the system-

level variables (s, tl, t2) serve as parameters in the disci-

plinary optimization problem.

The disciplinary objective ci is any function with the
following property:

For any (s, tl, t2), we have

cl(s, ll,tl,t,2) < 0

if and only if 91(s, ll,al(s, ll,t2)) >_ 0 for
all Ii satisfying al(s, 11, t,2) - tl = O.
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Ideally,wealsowouldlikecx to be continuously differ-

entiable. Following [11], we refer to cl as a discrepano,

function.
There is an analogous problem for Discipline 2. Given

(s, tl, t2), we compute/2(s, tl, t2) as a solution of the fol-

lowing minimization problem in 12:

min c2(s, 12, tl, t2)

12 (10)
s.t. t2 = a2(a2,12, q).

Again, a2 is computed via the disciplinary analysis

a2 = A2(8, I2, tl).

The subproblems (9)-(10) can be solved au-

tonomously. As in CO, we eliminate the disciplinary de-

sign variables l_ from the system-level problem via the

solution of the disciplinary subproblems.

The optimal value of the objective in the disciplinary

problems (9)-(10) defines the system-level consistency
constraints ci. The resulting system-level problem is

rain f(s, al(s,[l(s, tl,t2),t2),a2(s,[2(s, tl,t2),tl))
s,tl,t2

s. t. cl(s,{l(s, tl,t'2),tl,t2) <_0

c2(s,{2(s, tl,t2),tt,t2) <_O.
(11)

For OLD, we call a value of the system-level variables

(8, tl, t2) realizable for Discipline i if the optimal objec-

tive value in the corresponding disciplinary optimization

problem (9) or (10) is less than or equal to zero. As in
CO, realizable values of the system-level variables corre-

spond to desirable designs: if the optimal objective value

in the disciplinary optimization problem for Discipline i
less than or equal to zero, then this means that Discipline

i can exactly match the system-level input-output targets

without violating the disciplinary design constraints. A

point (s, tl, t2) is feasible for the system-level problem
when it is realizable for all the constituent disciplines.

One choice of discrepancy function is

Cl (S, ll, tl, t2) = E(rllill(0, g_(8, ll, al(8,/t, t2)))) 2
J

(12)

c2(s, 12, t,, t2) = E(min(0, g_(s, 12,a2(s, 12, t,)))) 2.
J

(13)
This objective is smooth (C1). Also note that e, > 0, so

the system-level constraint c, _< 0 is tacitly an equality
constraint ci = 0. Another choice of discrepancy func-

tion is a relaxation of the problem via the Kreisselmeier-

Steinhauser [25] (KS) approximation of maxj (9_) (with

9_ denoting the j-th component of the constraint vector

gi):

1

Cl(S, 11, tl, t2) = P In E ezp(-g_(s, lt, al(s, ll, t,z)))
J

(14)

1 In E ezp(-g_(s, 12, a2(s, 12, t,))).
c'_(s,12, tl,t2) = P

J
(15)

In this relaxation, we are approximating the disciplinary

realizable sets with sets that are smoothly bounded and

which are strictly inside the realizable sets. This is good,

since it means the approximation errs on the side of feasi-

bility.

Hybrids

There are also formulations that combine elements of

OLD and CO [11, 12]. In these hybrids, the goal of the

disciplinary subproblems is to minimize the discrepancy

in both the system-level targets for the disciplinary inputs

and outputs as well as the disciplinary design infeasibility.

Recall the p-norm: if v = @1... vm), then

The case p = oc corresponds to the max-norm

Itv n. : IvJI.

The disciplinary subproblem for Discipline 1 is

rnin cl(s, lt,tl,t.2),
ll

where the discrepancy function is

C 1 (S ll, t , t2) :- (E(Inax(0, g_ (s, ll, al (s, 11, t2)))) p

J

+tl al(s, lx(s, tt,t2),t2) - tl) []_)x/p. (16)

The discrepancy function and subproblem for Disci-

pline 2 are similar. The cases p = 1, 2 and p = _ are of

greatest interest.

One can also envision variants of CO along similar
lines. For instance, one could consider alternative norms

for the mismatch between the system-level targets and the

disciplinary values of those variables. In place of (5), one

might choose

min Ill al -s I1_+ II a_(_,,l_,t=) -ta I[_]
0"1,/1

s. t. gl(al,ll,ax(al,ll,t2)) >_ O,

and a similar problem for Discipline 2. As with OLD, the

cases p = 1, 2 and p = oc are of greatest interest, with

p = 2 being the discrepancy function discussed in our

earlier description of CO. The analytical properties of the

hybrid methods are similar to those of the CO and OLD.

6
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Analytical properties

The two bilevel approaches considered here have an-

alytical features that can have significant consequences

for computation. As we discuss, the constraints in the

system-level problem are of a nature that can make the

system-level problem difficult to solve using conventional

optimization algorithms. These features, in turn, derive
from the multilevel nature of the formulations and the na-

ture of the disciplinary subproblems used to eliminate the

disciplinary design variables.
One encounters the following difficulties in the

system-level problems associated with OLD and CO.

• If the system-level consistency constraints are

smooth, then Lagrange multipliers do not exist for

the system-level problem in the case of CO2 and

OLD with the discrepancy function (12)-(13).

• In some of the formulations, the system-level con-
straints have discontinuous derivatives at the solu-

tion of the system-level problem. This is the case,

lbr instance, for CO1.

The precise mathematical statements and proofs of these

results appear elsewhere [2, 3]. We give here a sketch of

what is going on, and explain how these difficulties arise
from the nature of the system-level constraints and the

bilevel nature of the approaches.

Analytical properties of CO. First, consider the system-

level equality constraints in CO2. These constraints van-
ish on the feasible region. Now, suppose the feasible re-

gion is an open set, as it is generally. Then, if these con-
straints are smooth (and they can be shown to be) then the

constraint Jacobian must vanish on the feasible region. If

C(s, tl, t2) is the set of system-level constraints, then the
usual first-order necessary condition characterizing a so-

lution is that there exist multipliers ,k for which

_ f(s, tt,t2) + _C(s, tl,t2)A = 0, (17)

where _7C is the transpose of the Jacobian of the system-

level constraints. However, VC(s, tl,t2) = 0 for all

feasible (s, tl, t2), so (17) can hold at a solution only if

_Tf(s, tl, t2) = 0. As a consequence, Lagrange multipli-
ers for the CO2 system-level problem do not exist unless

the solution of the system-level problem is also an uncon-

strained stationary point of f, which is rarely the case.

Thus, the system-level problem (4) that results in CO2

fails to satisfy the standard first-order necessary condi-
tions (Karush-Kuhn-Tucker or KKT conditions [26]) that
characterize solutions.

The system-level constraints in CO1 can be shown
to have discontinuous first derivatives for values of the

system-level targets that correspond to disciplinary de-

signs on the boundary of one or more of the disciplinary

feasible regions. Unfortunately, it is generally the case

that the solution of the system-level problem is such a

point. The discontinuity occurs because one or more of

the disciplinary design constraints become active at these

points. (This is a manifestation of the well-known phe-
nomenon of the nondifferentiable dependence of the solu-

tions of nonlinear programs on parameters when the set of

active constraints changes.) Because of the discontinuity

of the constraint Jacobian, the usual Lagrange multiplier
rule does not hold.

We emphasize that these effects necessarily take place

at problem solutions. That is, either the system-level prob-
lem is smooth at a solution, as in the case of CO2, in which

case it does not have Lagrange multipliers, or the system-

level problem is not smooth at a solution, as in the case
of CO1. The only exception to this situation occurs in

the rare event that none of the design constraints are bind-

ing at the solution. It is precisely the feature of CO2 that
smoothes out the problem--the vanishing of the system-
level constraint Jacobian--that assures that the Lagrange

multipliers do not exist. In CO1, the Lagrange multipliers

do exists, but at the expense of the constraint derivative

discontinuity.

These analytical features mean that conventional,

smooth optimization algorithms will generally have in-

creasing difficulty as they approach the solution to the

problem. Worse yet, optimization algorithms may give

bogus answers that are difficult to identify as such since
the usual first-order conditions that characterize stationary

points do not hold and computing system-level constraint

derivatives is prone to large error near the solution.

Numerical experiments on simple (convex) prob-

lems confirm that these analytical features can make the

system-level problem in collaborative optimization diffi-
cult to solve [2]. Numerical difficulties with CO were

previously noted in [27] and later in [28, 29]; we believe
these analytical features may explain these earlier obser-

vations, as well.

Analytical properties of OLD. If one chooses the dis-

crepancy function (12)-(13) in OLD, one obtains a

system-level problem for which Lagrange multipliers do
not exist, as in CO2. The reason is the same: the system-

level constraints vanish on open sets, in general, and this
means that the constraint Jacobians vanish.

One can use nonsmooth discrepancy functions, as in

(16). This leads to nonsmooth constraints in the system-

level problem, as in COx, which necessitates specialized

optimization techniques, as discussed in [12].

Algorithmic consequences

The nonexistence of Lagrange multipliers for the

system-level problem can cause trouble for methods that
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relyontheKKTconditions,suchassequentialquadratic
programmingor feasibledirectionsmethods(see,forin-
stance,thediscussionin[2]).Moreover,thenonexistence
ofmultipliersiscausedbythefactthattheconstraintJa-
cobiansvanishontheinterioroftherealizablesets.The
factthattheconstraintJacobiansvanishcancauseaddi-
tionalnumericalproblemsin thesolutionofthesystem-
levelproblem.Unfortunately,thesedifficultiesariseat
realizablepoints,whicharethedesignsthatmakethe
mostsensefor theunderlyingengineeringproblem.In
ordertobeassuredthatconventionaloptimizationmeth-
odswill workatallreliablytoapproachasolutionofthe
system-levelproblem,oneneedstointroducemechanisms
tostaysafelyawayfromtherealizablesetsofdesigns.
Thisseemscounterintuitive,butisaconsequenceof the
consistencyconstraintsthatresultfromtheattemptstore-
movethedisciplinarydesignvariablesfromthesystem-
levelproblem,andthesystem-levelconstraintsthatensue.

Inthecaseofnonsmoothsystem-levelconstraints,the
discontinuitiesintheconstraintJacobianscommonlyoc-
curatsolutions.Thisalsocausesproblemsforsmooth
optimizationtechniquesappliedtothesystem-levelprob-
lems.In [12]theauthorssketchanalgorithmforhand-
ingthenonsmoothnessthatarisesin thehybridOLDap-
proach.Ineffect,theiralgorithmapproximatesthegener-
alizedderivativeof thenonsmooth(butLipschitz)equal-
ityconstraints.Theauthorsreportsatisfactoryresultswith
thisapproach,thoughtheynotethatthereisapotentialfor
failure.

WenotethatOLDhasbeenproposedinconnection
withanalgorithmforitssolution(e.g.,[7,8]).Thealgo-
rithmattemptsto avoidtheexpenseof performingsub-
systemoptimizationproblemseverytimeaconstraintor
aconstraintderivativeisrequiredforthesolutionofthe
system-leveloptimizationproblem.Instead,[7,8] pro-
poseanapproachthatcouldbeviewedasanalogousto
sequentialquadraticor linearprogramming(SQPorSLR
respectively).Inthisapproach,thesystem-levelproblem
issolvedwithlinearizedconstraints;i.e.,foreachdesign
cycle,theconstraintvalueandconstraintderivativeare
heldconstant.ThedistinctionfromSQPorSLPisthatthe
objectiveisusedinsteadof itsquadraticor linearmodel.
However,thisalgorithmwillstillsufferfromtheanalyti-
calfeaturesofOLDdiscussedpreviously.

Anotherpeculiarityof thesystem-levelproblems
arisesinconnectionwiththesystem-levelequalitycon-
straintsthatvanishidenticallyontheinteriorof thefea-
sibleregion.If onestartsanequalityconstrainedopti-
mizationalgorithmatafeasiblepoint,evenverynearan
optimalsolution,onewill frequentlyimmediatelyleave
thefeasibleregion,andtheremainingiterateswill work
theirwaybacktowardsthesolutionthroughasequenceof
infeasibledesigns.Thisbehaviorwasobservedin[2,12],
forinstance.Thisoccursbecausethesystem-levelequal-

ityconstraintsprovidenohintthatoneisnearthebound-
aryofthefeasibleregionbecausetheconstraintJacobian
iszerothere.Intheabsenceofanyinformationaboutthe
boundaryofthefeasibleregion,theproblemappearsun-
constrainedandoneendsupleavingthefeasibleregion.
Thesystem-levelproblemisanoddequalityconstrained
optimizationproblem.Thefeasibleregiondefinedbythe
equalityconstraintsisgenerallyanopenset.Usuallyif
onehasonlyequalityconstraints,thefeasibleregionisa
hypersurface,andalltheconstraintsarebindingatasolu-
tion.Thisisnotthecasewiththesystem-levelconstraints
thatvanishontheinteriorofrealizablesets.

A formulation reflecting the algorithmic perspective

Starting with the fully integrated approach (3), we can

formulate the MDO problem in a way that respects the re-

quirements of conventional nonlinear programming anal-

ysis and algorithms and avoids the analytical difficulties

of the bilevel approaches we have discussed. Hence this

lbrmulation represents the algorithmic perspective.
One such class of approaches appears in [23, 24, 30],

where it is called either the "in-between" or "individual

discipline feasible" (or IDF) approach. The latter name is

unfortunate since it suggests that the formulation insures

designs that satisfy the disciplinary design constraints,

whereas it really refers to the fact that the analysis outputs
are consistent with ("feasible with respect to") the disci-

plinary analyses, though not the multidisciplinary analy-
sis.

To avoid this confusion, we use the term Distributed

Analysis Optimization to refer to a general class of meth-

ods that includes the IDF approach from [23,24, 30]. In
this formulation, we treat the implicit interdisciplinary

consistency constraints in the multidisciplinary analysis

as explicit equality constraints in the optimization prob-

lem. The fully integrated approach (3) becomes

min f(s, tL,t2)
S,l1,12 ,tl ,t2

s.t. gl(s, la,tl) >_ 0

92(s, lz,t2) >_ 0 (18)

tl =al(S, ll,t2)

t2 = a2(s, Ii,ti),

where

al(S, ll,t2) = Al(s, ll,t2)

a2(s,12,tl) = A2(s,12,tl).

Details of the formulation may bc found in the companion

paper [4].

Analytical properties of DAO. The DAO formulations

enjoy the same smoothness and stability properties as the

fully integrated formulation (3). There is no difficulty

with Lagrange multipliers or nonsmoothness.

8

American Institute of Aeronautics and Astronautics



Algorithmic consequences of DAO. The DAO formula-
tions have a larger number of optimization variables than

does the fully integrated formulation (3). The increase

in the number of optimization variables depends on the

bandwidth of the interdisciplinary coupling. Because the

analytical properties of DAO are the same as those of the

fully integrated approach, performance of optimization al-

gorithms applied to DAO will not suffer as a consequence
of reformulation.

DAO formulations possess another attractive algorith-

mic feature. Optimization algorithms are frequently sen-

sitive to the quality of derivative information. Because

the multidisciplinary analyses are not usually computed

to a high degree of accuracy, computing finite difference
derivatives of an integrated multidisciplinary analysis is

an error prone procedure. Therefore, methods that re-

ply on MDA for function evaluations may not be able
to obtain sufficiently accurate derivatives. Because DAO

formulations do not require multidisciplinary analyses to

be performed, the sensitivity of optimization algorithms
with respect to the convergence of MDA is not an issue

for DAO. Thus, the numerical performance of optimiza-

tion algorithms may improve compared to solving MDA-
based formulations.

Relationship among the methods

All the approaches we discuss here can be viewed

from the perspective of eliminating various subsets of
variables from the DAO formulation. Begin with the DAO

approach:

min
s,lt,12,tl ,t2

s.t.

f(s, tt,t2)

gl(S,/1, tl) > 0
g2(s,12,t2) _> 0 (19)

tl = at(s, ll,t2)

t2 = a2(s, 12,tt).

If we eliminate tl, t2 as independent variables from (19)

by always requiring

tl = al(s, ll,t2)

t2 = a2(s,12,tl),

then we obtain the fully integrated approach (3), since we

are requiring our designs to satisfy the multidisciplinary

analysis consistency equations (1)-(2).

OLD can be viewed as taking the further step of elim-

inating the disciplinary design variables ll, 12 as indepen-

dent variables from the optimization problem, in addition

to eliminating tl, t2. This elimination is accomplished via

the subsystem problems (9)-(10). Thus, in OLD, multi-

disciplinary analysis is performed at each iteration. The

hybrid methods can also be viewed as trying to eliminate

both the coupling variables tt, t2 and the disciplinary de-

sign variables ll, 12, as in OLD. However, the elimination
of tl, t2 is accomplished via the objective in the subsys-

tem optimization problems, rather than through equality

constraints in the subsystem optimization problems, a re-

laxation of the approach in OLD.

CO, on the other hand, eliminates the disciplinary de-

sign variables 11,/2 in DAO via (5)-(6), but does not elim-

inate the coupling variables tl, t2. Like DAO, the multi-

disciplinary analysis is enforced via the system-level con-
straints.

Consequences of disciplinary autonomy

As we mentioned, disciplinary autonomy is generally

desirable in an approach to formulating and solving MDO

problems. It is useful to distinguish between two types of

disciplinary autonomy in the context of MDO. First, au-

tonomy of integration or implementation is the extent to

which the problem can be implemented in a decentralized

manner. Second, autonomy of execution is the extent to
which the calculations that arise in the optimization are

decoupled.

Autonomy of integration--the ability to implement
the requisite computational modules independently along

the lines of the disciplines--is an attractive feature in a

formulation. However, if one begins with a multidis-

ciplinary analysis, the implementation of the fully inte-

grated formulation (3) may require extensive interaction

among disciplinary experts, since the underlying analy-

sis may have been put together in a way that might not

be quite appropriate for the purposes of optimization, and

may require a degree of re-assembly. For instance, one

needs to develop a sensitivity capability that involves the
MDA.

The bilevel methods we have discussed exhibit auton-

omy of integration. Moreover, single-level optimization

formulations can also exhibit autonomy of integration if

properly implemented. This is the case of the DAO ap-

proach, as discussed in the companion paper [4].

One goal of autonomy of execution may be to sim-

plify the computational process by distributing the dis-
ciplinary computations. However, the main aim of this

autonomy is usually expressed as the goal of conforming

to disciplinary organizational procedures. In other words,
it would be useful if the disciplinary organizations could

perform their disciplinary design activities independently,

with the help of some targets passed from the system co-
ordinator.

Autonomy of execution is a question of the inter-

disciplinary coupling in the problem. There is the de-

gree to which the calculations can be performed indepen-

dently across the disciplines. There is also the question

of whether the disciplinary design variables can be elimi-
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hatedfromthesystem-levelproblem.
Thebilevelapproacheswehavediscussedpossess

a certaindegreeof executionautonomy,becausethe
system-leveloptimizerdoesprovidethedisciplinaryprob-
lemswithtargetsfordisciplinaryoutputsand,possibly,
forthesharedvariables,whileallowingeachdisciplinary
optimizationproblemtomanipulateitssetoflocaldesign
variables.However,thedisciplinarysubproblemsarenot
disciplinarydesignoptimizationin thesingle-discipline
sense.Thatis,thesubproblemobjectivefunctionsarenot
disciplinaryobjectives,suchaslift, drag,orweight.In-
stead,thesubsystemobjectivesservetominimizethein-
consistencyamongthedisciplinaryanalyses(asinCO),
or,disciplinarydesigninfeasibility(asinOLD).

Eliminationof thedisciplinarydesignvariablesfrom
thesystem-levelproblemisthemostattractivefeatureof
thebilevelformulations.However,aswehavediscussed,
theeliminationof thedisciplinarydesignvariablesleads
tosystem-levelproblemsthathaveanalyticalfeaturesthat
cancausetroubleforconventionalnumericalalgorithms.
In contrast,thesingle-levelformulations(3)and(18)do
noteliminatethelocalvariablesfromthesystem-levelop-
timizationproblem.Thisfeatureis thepricesingle-level
optimizationformulationspayforrobustsolutionbycon-
ventionalnonlinearprogrammingalgorithms.

FormulationsthatdecomposetheMDA,asdoCO
andDAO,havetwosignificantdrawbacks.First,thein-
termediateiteratesordesignswillnotnecessarilysatisfy
themultidisciplinaryanalysis(1)-(2)untilasolutionis
reached.Incontrast,thesolutionprocessofthefullyin-
tegratedformulation(3)andOLDwill alwayshaveiter-
atesthatsatisfythemultidisciplinaryanalysis,andthus
arephysicallyrealizable,evenif theoptimizationhasto
bestoppedwithouthavingattainedanoptimum.

Second,distributedformulationsaredifficulttotreat
in optimizationunderuncertainty--theareathatis be-
comingincreasinglyimportantin engineeringdesign.
Thisisbecauseoneintroducesindependentauxiliaryvari-
ablesthatmayneedtomatchrandomvariableswhosesta-
tisticalpropertiesarenotknowna priori. The fully inte-

grated formulation can incorporate uncertainty in a natu-
ral manner. This feature is discussed in more detail else-

where.

Despite the drawbacks of the distributed formulations
outlined above, autonomy is an attractive feature. When

considering a problem formulation that aims for disci-

plinary autonomy, one should consider the following tech-
nical challenges:

Variables local to disciplinary subsystems fre-

quently enter into the disciplinary problem de-

scription as a part of an inequality constraint sys-
tem. Eliminating inequalities from the system-level

problem in a robust manner is difficult.

• MDO systems are inherently coupled. Decoupling

is performed by introducing local copies of the cou-
pling variables at the subsystem level. However, the

coupling must be restored, at least at the solution of

the overall MDO problem. Some of the constraints

that restore coupling have a form that will cause dif-

ficulties for conventional optimization algorithms.

As we have discussed, the techniques by which the

bilevel methods described here decompose MDA can

cause practical difficulties for computational optimiza-
tion. For this reason it is preferable to decompose MDA

by means of a DAO formulation, if possible. This is es-
pecially so because true disciplinary design autonomy is

not achieved by the bilevel methods in question, i.e., the

subproblem objectives are not disciplinary objectives, but
serve to attain MDA at solutions. On the other hand, DAO

formulations do not eliminate the local disciplinary vari-

ables from the system-level optimization problem, and, in
fact, increase the number of design variables. Whether

this is a difficulty depends on the specific problem and

the optimization method used. Recent advances in large-

scale optimization algorithms lead us to believe that the

presence of the local variables in the system-level prob-

lem may not present a lasting difficulty.

Concluding remarks

Bilevel optimization formulations arise naturally in an

attempt to treat problem complexity, size, and expense

by allowing for disciplinary autonomy of implementation
and execution. Any method that yields a system-level

problem with equality constraints that represent the dis-

ciplinary feasible regions will suffer from the difficulties
we have discussed. If the constraints are smooth, then La-

grange multipliers will not exist. On the other hand, the

system-level constraints may be nonsmooth. Moreover,

the system-level constraints, if they are explicitly equali-

ties (as in CO) or implicitly equalities (as in OLD with the

discrepancy function (12)-(13)), do not reveal the pres-
ence of the boundary of the feasible region. These fea-

tures will confuse constrained optimization algorithms, as
we have discussed.

Thus, elimination of the disciplinary design variables

comes at the price of a system-level problem with unde-

sirable analytical features that may cause trouble for com-

putation. The distributed formulation we currently con-
sider as a viable alternative decomposes MDA but does

not eliminate local variables from the system-level prob-

lem. On a positive side, DAO does not suffer from the

analytical and computational drawbacks of the bilevel op-

timization formulations. We conjecture that the most vi-

able approaches to solving MDO problems will combine

conventional problem formulations with specialized opti-
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mizationalgorithms,Several alternatives are being cur-
rently considered.
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